Modulbeschreibungen

Description of the Courses in CIT/CMM
Master Studies

CIT: Communication and Information Technology
CMM: Control, Microsystems, Microelectronics

Version of 8th November 2018
Table of Contents

Advanced Design of Mixed-Signal Systems ... 4
Advanced Digital Signal Processing ... 5
Advanced Digital System Design ... 6
Advanced Topics in Digital Communications 7
Antennas ... 8
Architectures and Design Methodologies of Integrated Digital Systems 9
Channel Coding I ... 10
Channel Coding II ... 11
Communication Networks: Systems .. 12
Communication Networks: Theory ... 13
Communication Technologies .. 14
Computational Intelligence in Modeling, Prediction and Signal Processing ... 15
Control Theory I ... 16
Control Theory II .. 17
Control Theory III ... 18
Digital Signal Processing ... 19
Discrete Systems ... 20
Electrodynamics ... 21
German language course ... 22
Information and Communication Technology Laboratory I 23
Information and Communication Technology Laboratory II 24
Integrated Circuits ... 26
Intellectual Property, Patents and Further Protective Rights 27
Internet of Things .. 28
Lab 1 CMM - Lab .. 29
Lab 2 CMM - Lab .. 30
Low Power Strategies in Wireless Sensor Networks 31
Master Seminar .. 32
Master’s Thesis .. 33
Microfluidic Devices .. 34
Microsystems .. 35
Micro Technology ... 36
Modeling and Simulation of Sensors, Circuits and Systems in Automotive Electronics ... 37
Network Simulation (previous title: Stochastic Simulation of Communication Networks and their Protocols) ... 39
Next Generation Cellular Networks .. 40
Nonlinear Systems .. 42

2
Optimisation Theory..43
Presenting science ...44
Process Automation I ..45
Project..46
Real-Time Software Design 1 & 2 ..47
RF Frontend Devices and Circuits ...49
Robotics I ...50
Robotics II ...52
Sensors and Measurement Systems ..54
Sensor Science..55
Speech and Audio Signal Processing ..56
Stochastic Simulation of Data Networks and Their Protocols (until summer term 2018)
(new title: Network Simulation)..57
Systems-on-Chip: Architectures and Design Methods ...58
System Theory..59
Understanding Germany..60
Wireless Communications...61
Annex 1: Details of the Labs for CMM ...62
Advanced Design of Mixed-Signal Systems
01-15-03-DMSS-V

Responsible: Prof. Dr.-Ing. Steffen Paul
Lecturer: Dr. Dmitry Osipov

Aim:
After this 1-semester course, the students will have gained:
- Knowledge in system-level simulation of mixed-signal systems.
- An in-depth understanding of process and mismatch on the systems parameters.

Prerequisite: no formal requirements. Knowledge in the basics of electronics and electrical engineering and in semiconductor devices is an asset.

Content:
Mixed-systems design overview based on the example of 8 bit SAR ADC in 45 nm CMOS

Literature:

Methods: Lectures, exercises

Efficiency Statement: Oral examination

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 35%
Reading, homework and preparation of exam 65%

Suggested for: CMM 2nd term (elective course), M.Sc. ET/IT
Advanced Digital Signal Processing
01-15-03-DSP-V

Responsible: Prof. Dr.-Ing. A. Dekorsy
Lecturer: Prof. Dr.-Ing. A. Dekorsy

Aim:
This is part two of the two semester course on digital signal processing. After the course, the students will be able to:

- Apply FFT for spectral analysis of deterministic signals.
- Develop small numeric routines.
- Explain the basics of the traditional methods of spectral analysis for stochastic processes.
- Apply existing routines for simulation (Matlab)
- Understand the theoretical basics of parametric estimation procedures.
- Analyse language signals using existing program libraries.

Prerequisite: Digital Signal Processing I

Content:
1. Spectrum Analysis of Deterministic Signals
 1.1. DFT of Real Valued Sequences
 1.2. Transform of Real Valued Bandpass Signals
 1.3. Analysis of Periodic Signals
 1.4. Window-Functions (Time Domain)
2. Traditional Spectrum Estimation
 2.1. Estimation of the Autocorrelation
 2.2. Calculation of the ACF based on FFT
 2.3. Periodogram (Variance)
 2.4. Consistent Spectrum Estimation (Survey)
 3.1. ARMA-Models
 3.2. Markov Process (1st Order)
 3.3. Yule-Walker Equation
 3.4. Linear Prediction (Survey)
 3.5. Levinson-Durbin Recursion
 3.6. Lattice Structure
 3.7. Yule-Walker Equation
 3.8. Examples

Literature:

Methods: Lectures, PC exercises using Matlab

Efficiency Statement: Written examination

Information, Downloads: http://www.ant.uni-bremen.de/en/courses/dsp2

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 2nd term, (compulsory course), CMM 2nd (elective course), Master ET/IT
Advanced Digital System Design
01-15-03-ADS-V

Responsible: Prof. Dr.-Ing. Alberto García-Ortiz
Lecturer: Prof. Dr.-Ing. Alberto García-Ortiz

Aim:
The students will learn the relevant skills for the realization of function-specific digital systems, including high-performance processors; they will master the systematic construction and the design of a digital system; and they will be able to design and analyse digital systems with multiple processors.

Prerequisite: Knowledge about fundamental digital modules: its use, operation principles, and design methodologies (e.g. Digital Technology).

Content:
High-performance processors
 Pipelining
 Dynamic scheduling and out-of-order execution
Multiprocessors
 Taxonomy
 SIMD architectures
 Shared memory vs message passing multiprocessors
Data coherency in multiprocessor systems
 Cache architectures
 Snooping-protocols
Interconnect architectures
 Metrics and topologies
 On-chip buses
 Networks-on-Chip

Literature:
- Lecture script and lecture slides.

Methods: 2h lecture, 1h exercises
Use of CAD tools for selected exercises

Efficiency Statement: written or oral examination

Information, Downloads: https://elearning.uni-bremen.de/

ECTS Credits: 4
SWS: 3

Workload: 120 hours (lectures and courses 42h, homework 28h and preparation of exam 50h)

Suggested for: CMM 3rd term (compulsory course), can also be done in 1st term, CIT 3rd term (elective course), can also be done in 1st term
Advanced Topics in Digital Communications
01-15-03-ATDC-V

Responsible: Dr. Carsten Bockelmann
Lecturer: Dr. Carsten Bockelmann

Aim:
Advanced Topics in Digital Communications is a one semester elective course for master
students. The aim of this course is to close the gap between topics taught in basic courses and
the requirements for master theses in the area of digital communications. Therefore, the
course covers selected current research topics that are presented in an illustrative form.
Supervised exercises with Matlab programming should enable students to get familiar with
the simulation of digital communication systems, the application of certain algorithms, etc.
After this course, you should be able to:
• build a simulation model of a digital communication system
• implementation of multi-user detection techniques in CDMA or SDMA systems
• analyze the performance of communication systems by simulations

Prerequisite: Communications Technology I+II, Channel Coding I+II

Content:
- Contents, Organisation
- Structure of digital communication system
 - Mobile radio channel
 - Systems with multiple inputs and outputs
- Information Theory
 - Single-input single-output fading channels
- Multiple-input multiple-output channels
- Multiuser detection in CDMA
- Multiple antenna systems
- Diversity concepts
- Space division multiple access

Literature:
V. Kühn: Wireless communications over MIMO Channels: Applications to CDMA and
Multiple Antenna Systems,
D. Tse, P. Viswanath: Fundamentals of Wireless Communication
A. Paulraj, R. Nabar, D. Gore: Introduction to Space-Time Wireless Communications
E. Biglieri, R. Calderbank, A. Constantinides, A.Goldsmith: MIMO Wireless
Communications

Methods: Lectures, exercises with Matlab

Efficiency Statement: Oral examination

Information, Downloads: http://www.ant.uni-bremen.de/en/courses/atdc

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT and CMM 2nd or 3rd term, (elective course), Studienabschnitt,
Master ET/IT
Antennas
01-15-03-Ant-V

Responsible: Prof. Dr.-Ing. Martin Schneider
Lecturer: Prof. Dr.-Ing. Martin Schneider

Aim:
The students will learn the fundamentals of antennas and their calculation. Basic theoretical part is the introduction of electrodynamic vector potentials that give the electromagnetic fields generated by rapidly varying electric currents. First, fundamental insight in antennas will be given by the analysis of the Hertzian dipole and the small loop antenna. Main terms and definitions are introduced: directivity, gain, efficiency, half power beamwidth, path loss, and equivalently radiated isotropic power (EIRP). Then different antennas are calculated: linear antennas like the half-wave dipole, array antennas, and aperture antennas like horn antennas, slot antennas and reflector antennas. Also lens antennas and microstrip patch antennas are discussed.

After this course, the students should be able
• to explain the working principle of antennas
• to decide which kind of antennas suits a certain application at a certain frequency
• to apply the method of electrodynamic potentials for solving antenna problems
• to explain and to apply the method of equivalent sources for calculating aperture antennas

Prerequisite: Electrodynamics

Content:
- Fundamentals of antennas
- Electrodynamic Potentials
- Method of equivalent sources and Huygens’ principle
- Calculation of linear antennas
- Calculation of array antennas
- Calculation of aperture antennas
- Calculation of microstrip patch antennas

Literature:
Lecture script and lecture slides.

Methods: 2h lecture, 1h exercises and tutorial

Efficiency Statement: written examination

Information, Downloads: http://www.hf.uni-bremen.de

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 2nd term (compulsory course), Master ET/IT
Architectures and Design Methodologies of Integrated Digital Systems
01-15-03-DIDS-V

Responsible: Prof. Dr.-Ing. Alberto García-Ortiz
Lecturer: Prof. Dr.-Ing. Alberto García-Ortiz

Aim:
The students will learn the design methodologies, theoretical algorithms, and tools used for the development of microelectronic integrated systems, as well as the strategies regarding their practical implementation with industrial CAD tools. The students will be able to implement a complex microelectronic integrated digital guaranteying its correctness and testability.

Prerequisite: None

Content:
- Design tools and abstractions levels
- Physical design
 - Floorplanning and placement
 - Routing and wire estimation
 - DRC and LVS
- Design-for-Test
 - Scan-based design, Boundary scan
 - BIST
- Test-architectures for SoCs
- Test-generation and error diagnosis
 - ATPG
 - Fault simulation

Literature:

Methods: 2h lecture, 1h exercises
Possibility of complementing the lecture with a laboratory

Efficiency Statement: written or oral examination

Information, Downloads: https://elearning.uni-bremen.de/

ECTS Credits: 4
SWS: 3

Workload: 120 hours (lectures and courses 42h, homework 28h and preparation of exam 50h)

Suggested for: CMM 1st term (compulsory course), can also be done in 3rd term
CIT 1st term (elective course), can also be done in 3rd term
Channel Coding I
01-15-03-CCod1-V

Responsible: Dr. Dirk Wübben
Lecturer: Dr. Dirk Wübben

Aim:
Channel Coding I is a one semester elective course. The aim is to provide a basic understanding how channel coding works and to present the most important code families. Moreover, results obtained from information theory show the ultimate limits theoretically achievable with optimal codes.
After this course, you should be able to:
• Explain the principle of channel coding
• Explain the ultimate limits from information theory
• Perform encoding and decoding for linear block and convolutional codes
• Grade the performance of different codes

Prerequisite: Basics of communication technology and digital signal processing

Content:
- Contents, Organisation
- System model for digital communications
- One lesson of information theory
- Linear block codes
 - Generator and parity check matrix
 - Standard array and syndrome decoding
- Examples (SPC, Hamming, Simplex)
- Cyclic Codes (description by polynomials)
- Examples (CRC, BCH, Reed-Solomon)
- Convolutional codes
- Encoder, graphical representations
- Viterbi decoding

Literature:

Methods: Lecture, exercises using Matlab

Efficiency Statement: Written Exam

Information, Downloads: http://www.ant.uni-bremen.de/en/courses/cc1

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT and CMM 2nd or 3rd term, (elective course)
Aim:

Channel Coding II is a one semester elective course that requires the basics taught in Channel Coding I. The focus of this course is on sophisticated channel coding approaches for specific applications, i.e. transmitting high data rates over bandlimited channels. Moreover, the course covers topics like concatenated codes that are part of actual research work and thus important for subsequent master theses.

After this course, you should be able to:
- Explain the principle of coded modulation and possible realizations
- Explain the concept of code concatenation and iterative turbo decoding
- Explain the principle of adaptive error control schemes and the difference to forward error correction

Prerequisite: Communications Technologies, Wireless Communications, Channel Coding I

Content:
- Contents, Organisation
- Coded Modulation
 - Ungerböck’s approach
 - Pragmatic approach by Viterbi
- Multilevel Codes
- Concatenated codes
 - Serial and parallel concatenation
 - Analysis of distance properties
- L-Algebra
- Soft-output decoding
- Examples (Product Codes, Turbo Codes)
- Adaptive Error Control
- Basic ARQ strategies
- Hybrid schemes (ARQ + FEC)

Literature:

Methods: Lecture, exercises

Efficiency Statement: Written examination

Information, Downloads: http://www.ant.uni-bremen.de/en/courses/cc2

ECTS Credits: 4
SWS: 3

Workload: 120 hours
- Lectures and courses 38%
- Reading, homework and preparation of exam 62%

Suggested for: CIT and CMM 2nd or 3rd term, (elective course)
Communication Networks: Systems
01-15-03-CNS-V

Responsible: Prof. Dr. A. Förster
Lecturer: Prof. Dr. A. Förster / Dr. Andreas Könsgen

Aim:
This course gives a survey of methods and systems related to communication networks. After this course, you should be able to:

- describe exemplary systems of communication networks;
- name and explain the layers of a communication network;
- know the basic technologies used for communication protocols;
- know basic error handling mechanisms for communication protocols.

Prerequisite: None

Content:
The main topics of this course are:

- Distributed Systems
- ISO/OSI 7 Layer Reference Model for Open Communication
- Formal Specification Methods for Protocols
- Services and Protocols of the Data Link, Network and Transport Layer
- Local Area Networks
- Wide Area Networks
- Network Control:
 - (Virtual) Connections, Routing, Addressing, Flow Control
- System Examples:
 - TCP/IP
 - Wireless Networks
- Performance Analysis
- Network Security

Literature:

Methods: Lectures and exercises

Efficiency Statement: Homework and electronic examination

Information, Downloads: Literature is given in the lectures,
Please also refer to www.comnets.uni-bremen.de

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 2nd term, (compulsory course), CMM 2nd or 3rd term, (elective course); M. Sc. ET/IT
Communication Networks: Theory
01-15-03-CNT-V

Responsible: Prof. Dr. Anna Förster
Lecturer: Prof. Dr. Anna Förster

Aim:
This course gives a survey of methods used for the performance analysis of communication networks. After this course, you should be able to analyse simple communication protocols and networks.

Prerequisite: None

Content:
The main topics are:
- Fundamentals of probability theory
- Graphs, random graphs and network flows
- Finite state (Markovian) processes
- Simple queues and queuing networks
- Petri Nets
- Statistical model fitting and evaluation of performance data
- Traffic modelling and random number generators
- Discrete event simulation

Literature:
- David Easley and Jon Kleinberg: “Networks, Crowds and Markets”, Cambridge University Press, 2010 (available online)

Methods: Lectures and exercises

Efficiency Statement: Homework and electronic examination

Information, Downloads: Literature is given in the lectures, Please also refer to www.comnets.uni-bremen.de

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 1st term, (compulsory course), CMM 2nd or 3rd term, (elective course), M. Sc. ET/IT
Communication Technologies
01-15-03-ComT-V

Responsible: Prof. Dr.-Ing. A. Dekorsy
Lecturer: Prof. Dr.-Ing. A. Dekorsy

Aim:
Communications Technology I is the first part of a two semester course. It covers the basics of digital signal transfer.
After this first part, the students should be able to:
- Explain the important prerequisites for digital signal transfer
- Layout simple transfer systems
- Solve simple layout problems for signal shaping and filtering
- Develop simulation models using Matlab

Prerequisite: System theory, stochastic systems, basics of communication theory

Content:
0. Introduction: Stochastic Processes 3. Principles of Time Multiplex
1. Digital Baseband Transmission 3.1. Example: PCM-Hierarchy
1.1. Spectra of Data Signals 3.2. Synchronisation (symbol rate)
1.2. Nyquist Criterion 4. Digital Modulation
1.3. Partial Response Transmission 4.1. Linear Modulation Methods
1.5. Bit Error Probability 4.3. Spectral Characteristics
2. Equalization 4.3. Coherent Demodulation
2.1. Linear Equalization 4.4. Carrier Synchronisation
2.2. Decision Feedback 4.5. Noncoherent Demodulation
2.3. Adaptive Equalization

Literature:
David Tse, Pramond Viswanath: Fundamentals of Wireless Communications.

Methods: Lecture, exercises with presentation by the students

Efficiency Statement: Written examination

Information,
Downloads: http://www.ant.uni-bremen.de/en/courses/ct1

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 2nd term, (compulsory course), CMM 2nd term, (elective course), Master ET/IT
Computational Intelligence in Modeling, Prediction and Signal Processing
01-15-03-CIMP-V

Responsible: PD. Dr.-Ing. habil. Ajoy K. Palit
Lecturer: PD. Dr.-Ing. habil. Ajoy K. Palit

Aim:
Computational Intelligence (CI) in modeling, prediction and signal processing is an independent one semester course which will give you a basic understanding of intelligent computing technologies primarily based on fuzzy logic, neural networks, evolutionary computations/genetic algorithms and hybrid intelligent systems such as neuro-fuzzy networks etc. that can be applied for system modeling, data prediction, and signal processing purposes. After this course, you should be able to:
• Understand the importance of computationally intelligent techniques based on fuzzy logic, neural networks, genetic algorithms and fuzzy-neural networks in engineering applications.
• Understand the difference between the classical set and fuzzy set, fuzzy set as generalization of crisp set and terms like fuzzy arithmetic, fuzzy logic systems, fuzzification, fuzzy relation, fuzzy-rules, defuzzification, and inferencing mechanism, tuning membership functions etc.
• Generate fuzzy rules through learning from examples and clustering method
• Implement and fine tune the fuzzy logic system using neural networks based technology
• Analyze the transparency, interpretability and accuracy of the fuzzy/ fuzzy-neural model
• Apply fuzzy logic / fuzzy-neural systems in (white box) system modeling, data prediction and linearization of nonlinear sensor characteristic, adaptive filtering purposes etc.

Prerequisite: Mathematics, C++ / MATLAB programming

Content:
- Introduction to CI & their Applications
- Principal constituents of CI
- Fuzzy sets and properties, Fuzzy relation
- Fuzzy logic systems (Mamdani, TS, singleton, relational model)
- Fuzzy inferencing mechanism
- Generation of fuzzy rule (Wang’s method)
- Clustering and LSE based rule generation
- Neuro implementation of fuzzy system
- Introduction to ANFIS / neuro-fuzzy network
- Backpropagation, Marquardt training algorithm for neuro-fuzzy network
- Problems in automatic data driven rule generation
- CI Applications in modeling, prediction and intelligent signal processing

Literature/Reference Book:

Methods: Lecture, exercises

Efficiency Statement: Written examination, Programming Exercise

Information, Course Materials: E-mail: palit (at) uni-bremen.de & see the Ref. Book

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 40%
Reading, homework and preparation of exam 60%

Suggested for: CIT and CMM, 2nd or 3rd term. (elective course)
Control Theory I
01-15-03-CTh1-V

Responsible: Prof. Dr.-Ing. Kai Michels
Lecturer: Prof. Dr.-Ing. Kai Michels

Aim:
• Understanding and Handling of state space methodology
• Design of state space controllers with different methods
• Observer design

Prerequisite:
Lecture „Grundlagen der Regelungstechnik“ or equivalent knowledge about basics of control (bode diagrams, nyquist plots, nyquist stability criterion, PID controller design)

Content:
- Definition and features of state variables
- State space description of linear systems
- Normal forms
- Coordinate transformation
- General solution of a linear state space equation
- Lyapunov stability
- Controllability and observability
- Concept of state space control
- Steady-state accuracy of state space controllers
- Observer
- Controller design by pole placement
- Riccati controller design
- Falb-Wolovitch controller design

Literature:
• K. Michels: Control Engineering (Script in German and English)

German:
• J. Lunze: Regelungstechnik 2
• O. Föllinger: Regelungstechnik
• H. Unbehauen: Regelungstechnik II

English:
• Norman S. Nise: Control Systems Engineering

Methods: Lectures, tutorial, demonstration of numerical and symbolical calculation with Matlab

Efficiency Statement: Written or oral examination, depending on number of participants.

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 35%
Homework and preparation of exam 65%

Suggested for: CMM 2nd term (compulsory course)
CIT 2nd term (elective course)
Control Theory II
01-15-03-CTh2-V

Responsible: Prof. Dr.-Ing. Kai Michels
Lecturer: Prof. Dr.-Ing. Kai Michels

Aim:

- Increasing the understanding of linear state space analysis and controller design
- Understanding the idea and the design of norm-optimal controllers

Prerequisite: Lecture „Control Theory I“

Content:

- Zeros of Multi-Input-Multi-Output systems
- Robustness
- Norms
- Design of norm-optimal controllers

Literature:

- K. Michels: Control Engineering (Script in German and English)
- K. Müller: Entwurf robuster Regelungen (German)
- J. Ackermann: Robust Control (English)

Methods: Lectures, tutorial, demonstration of numerical and symbolical calculation with Matlab

Efficiency Statement: Written or oral, depending on the number of participants

Information, Downloads:

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 35%
Homework and preparation of exam 65%

Suggested for: CMM and CIT 3rd term (elective course)
Control Theory III
01-15-03-CTh3-V

Responsible: Prof. Dr.-Ing. Kai Michels
Lecturer: Dr.-Ing. Jochen Schüttler

Aim:
Getting familiar with the „State of the Art“ in the field of linear and non-linear control

Prerequisite: Lecture „Control Theory II“

Content:
• μ-synthesis as next stage of norm-optimal control, which was introduced in Control Theory II
• Exact Linearization

Literature:
• Isidori: Nonlinear Control Systems
• Ackermann et al.: Robust Control
• Adamy: Nichtlineare Regelungen
• Slotine: Applied Nonlinear Control
• Doyle et al.: Feedback Control Theory

Methods: Lectures, demonstration of numerical and symbolic calculation with Matlab

Efficiency Statement: Written or oral, depending on the number of participants

Information, Downloads:

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 31%
Homework and preparation of exam 69%

Suggested for: CMM and CIT 4th term (elective course)
Digital Signal Processing
01-15-04-DSI-V

Responsible: Prof. Dr.-Ing. A. Dekorsy
Lecturer: Prof. Dr.-Ing. A. Dekorsy

Aim:
This is the first part of the two semester course on digital signal processing. After this course, the students will be able to:

- Analyse recursive and non-recursive digital filters.
- Layout basic structures for practical realisation.
- Perform layouts using existing layout software.
- Simulate digital filters using Matlab.
- Apply the basics of FFT.

Prerequisite: System theory, basics of stochastic and random variables

Content:
1. Introduction
2. Recursive Filters
 2.1. Canonical Structures
 2.2. Design of Recursive Filters
 2.3. Special Types of Recursive Filters
 2.4. Quantization Effects
3. Non-Recursive Filters
 3.1. FIR-Systems
 3.2. Systems with Linear Phase
3.3. Design of Filters with Linear Phase
3.4. Special Non-Recursive Filters
3.5. Complex Valued FIR-Filters
4. Discrete Fourier Transform (DFT)
 4.1. Definition of the DFT
 4.2. Properties of the DFT
 4.3. Relation with other Transforms
 4.4. Fast Fourier Transform (FFT)
 4.5. Fast Convolution

Literature:

Methods: Lectures, PC exercises with Matlab

Efficiency Statement: Written examination

Information, Downloads: http://www.ant.uni-bremen.de/en/courses/dsp1

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 1st term, (elective), CMM 1st or 3rd term, (elective course), Bachelor ET/IT
Discrete Systems
01-15-03-DS-V

Responsible/Lecturer: Prof. Dr.-Ing. Kai Michels

Aim:
This lecture will give insight into discrete control theory, adaptive control, and Fuzzy-Neuro systems

Prerequisite: Lecture “Control Theory I”

Content:
- Discrete systems: basic considerations
- Sampling theorem
- Linear difference equations
- State space description of discrete linear systems
- Stability of discrete systems
- Transformation of a continuous model into a discrete model
- z-transformation
- Controller design for discrete systems
- Adaptive control
- Fuzzy control
- Neural networks

Literature:
German and English: K. Michels: Control Engineering (Script)

German:
- K. Michels: Fuzzy-Regler
- J. Lunze: Regelungstechnik 2
- R. Isermann: Digitale Regelsysteme Band I
- H. Unbehauen: Regelungstechnik 2
- Böcker, Hartmann, Zwanzig: Nichtlineare und adaptive Regelungssysteme

English:
- K. Michels: Fuzzy Control
- Norman S. Nise: Control Systems Engineering
- Karl J. Astrom: Adaptive Control
- Ioan Dore Landau: Adaptive Control

Methods: Lectures and tutorial

Efficiency Statement: Written or oral examination, depending on the number of participants

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 35%
Reading, homework and preparation of exam 65%

Suggested for: CMM 3rd term (compulsory course), CIT 3rd term (elective course)
Electrodynamics
01-15-04-ED-V

Responsible: Prof. Dr.-Ing. Martin Schneider
Lecturer: Prof. Dr.-Ing. Martin Schneider

Aim:
Without Electrodynamics, without the theory of Maxwell, Faraday, Ampere, Oersted, et al. about electric, magnetic, and electromagnetic phenomena like conduction, induction, and electromagnetic fields and waves, our modern world with all its achievements in electricity, electronics and communications would not exist. This course gives the students an understanding about the theory in the field of electrodynamics. The focus is on the discussion of Maxwell’s equations and electromagnetic wave phenomena.

After this course the students should be able

- to explain electromagnetic phenomena with the help of Maxwell’s equations
- to derive the wave equation, to give their solutions and to interpret them
- to explain the basics of antennas

Prerequisite: Fundamentals of electric and magnetic fields taught in B.Sc. programs in Electrical Engineering. Vector analysis.

Content:
- Mathematical background of electrodynamics (scalar and vector fields, vector operations grad, div, curl)
- Maxwell’s equations
- Electromagnetic waves
- transmission line theory incl. reflection, wave impedance, matching

Literature:
Lecture script and lecture slides.

Methods: 2h lecture, 1h exercises and tutorial

Efficiency Statement: Written examination

Information, Downloads: http://www.hf.uni-bremen.de

ECTS Credits: 4
SWS: 3
Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 1st term (compulsory course)
CMM 1st term (elective course)
German language course

Responsible: Teachers of the language school
Lecturer: Teachers of the language school

Aim:

The aim of the German language course is to achieve a basic understanding of German. After the courses, the students should be able to communicate in German for the needs of everyday life. They should also be able to understand scientific and management topics so that they can follow the discussions in a research institute.

Prerequisite: None

Content:

The German language course is given by the Goethe Institute in Bremen using the methods of language teaching. The course is obligatory, but not graded. There is no grade for this course given in the master certificate. The course is planned for two semesters, the 1st and the 2nd semester with 2CP each. However, due to lack of teaching capacities and due to reduced financial resources for language courses, a different approach may optionally be used. For that reason, the course may also be done in the first semester with one 4 CP course program. The students will be informed in a transparent way about this situation by the master office.

Literature:

Methods: Language teaching methods

Efficiency Statement: No exam, participation statement

Information, Downloads: Given by the language school

ECTS Credits: 4

Workload: 120 hours
Presence 40%
Study time 60%

Suggested for: CIT and CMM 1st term, (compulsory course).
Information and Communication Technology Laboratory I
01-15-03-IKT1-P

Responsible: Prof. Dr.-Ing. A. Dekorsy, Prof. Dr. A. Förster, Prof. Dr.-Ing. M. Schneider
Lecturer: Prof. Dr.-Ing. A. Dekorsy, Prof. Dr. A. Förster
Prof. Dr.-Ing. M. Schneider

Aim: The laboratory course “Information and Communication Technology Laboratory I” is meant to provide the hands-on experience for the topics of the lectures offered by the Institute of Telecommunications and High Frequency Techniques. The module allows students to acquire the knowledge concerning the practical application of communication technology methods.

Prerequisite: No formal preconditions. With regard to contents of the experiments the students are supposed to attend or have attended the following lectures:
- Electrodynamics
- Communication Technologies
- Wireless Communications
- Communication Networks
- RF Frontend Devices and Circuits

Content: 6 laboratory experiments are offered. Up to four students can form a group and perform the laboratory experiments together. CIT students have to select three out of the six experiments for 3 credit points, and at least one from each of the three institute labs. For 6 credit points all 6 experiments have to be performed (only for Master ET/IT, not CIT).

Methods: Groups of up to 4 students. Manuscripts are provided in English. Short examination of the preparation before the experiment.

Efficiency Statement: The preparation questions to the experiment have to be answered in hand-written form, required for each member of the group and presented at the beginning of each individual lab experiment. Otherwise taking part in the lab experiment is not possible. Hand-written protocols of the lab experiments have to be done during the lab.

Information, Downloads: www.ant.uni-bremen.de/en/courses/; www.comnets.uni-bremen.de; www.hf.uni-bremen.de

ECTS Credits: 3 (6)
SWS: 2 (4)
Workload: 90 (180) hours

Suggested for: CIT 2nd term (compulsory course), Master ET/IT
Information and Communication Technology Laboratory II
01-15-03-IKT2-P

Responsible: Prof. Dr.-Ing. A. Dekorsy, Prof. Dr. A. Förster
 Prof. Dr.-Ing. M. Schneider
Lecturer: Prof. Dr.-Ing. A. Dekorsy, Prof. Dr. A. Förster
 Prof. Dr.-Ing. M. Schneider

Aim: The laboratory course “Communications Technology Laboratory I“ is meant to provide the
 hands-on experience for the topics of the lectures offered by the Institute of Telecommunications
 and High Frequency Techniques. The module allows students to acquire the knowledge
 concerning the practical application of communication technology methods.

Prerequisite: No formal preconditions. With regard to contents of the experiments the
 students are supposed to attend or have attended the following lectures:
 - Electrodynamics
 - Communication Technologies
 - Wireless Communications
 - Communication Networks
 - RF Frontend Devices and Circuits

Content: 6 laboratory experiments are offered. Up to four students can form a group and perform the
 laboratory experiment together. CIT students have to select three out of the six experiments
 for 3 credit points, and at least one from each of the three institute labs. For 6 credit points all
 6 experiments have to be performed (only for Master ET/IT, not CIT).

Literature:
J. Proakis: Digital Communications; D. Tse, P. Viswanath: Fundamentals of Wireless
 Communications; A. Paulraj, R. Nabar, D. Gore: Introduction to Space-Time Wireless
 Communications; A. Goldsmith: Wireless Communications; D. Pozar: Microwave
 Engineering; C.A. Balanis: Antenna Theory

Methods: Groups of up to 4 students. Manuscripts are provided in English.
 Short examination of the preparation before the experiment.

Efficiency Statement:
The preparation questions to the experiment have to be answered in hand-written form, required
for each member of the group and presented at the beginning of each individual lab experiment.
Otherwise taking part in the lab experiment is not possible. Hand-written protocols of the lab
experiments have to be done during the lab.

Information, Downloads:
www.ant.uni-bremen.de/en/courses/ ; www.comnets.uni-bremen.de ; www.hf.uni-bremen.de

ECTS Credits: 3 (6)
SWS: 2 (4)
Workload: 90 (180) hours
Suggested for: CIT 3rd term (compulsory course), Master ET/IT
Integrated Circuits
01-15-03-InS-V

Responsible: Prof. Dr. Steffen Paul
Lecturer: Prof. Dr. Steffen Paul

Aim:

Integrated circuits gives an survey on more complex analog circuits. After this course, you should be able to:
• describe and characterize noise in electronics circuits
• apply the gm/Id sizing method to design amplifier circuits for advance CMOS technologies
• deal with process variations and mismatch
 * understand the frequency behaviour of amplifier circuits
 * understand and size compensation networks
 * use feedback to modify circuit characteristics.
 * design simple AD converters as integrated circuit

Prerequisite: Basics of electrical engineering and analog integrated circuits

Content:
1. Noise
2. gm/Id Method
3. Mismatch
4. two pole opamps
5. feedback
6. ad converter

Literature:
T. Carusone: Analog integrated circuit design.
W. Sansen: Analog Design essentials.

Methods: Lecture, exercise in the clean room

Efficiency Statement: Written examination

Information, Downloads: Studip

ECTS Credits: 4
SWS: 3

Workload: 120 hours
 Lectures and courses 38%
 Design project 20%
 Reading, homework and preparation of exam 42%

Suggested for: CIT 1st term (elective), CMM 1st term (compulsory), ET/IT Master
Intellectual Property, Patents and Further Protective Rights
01-15-03-Pat-V

Responsible: N.N.
Lecturer: Dr. Matthias Hoener

Aim:

Lectures in Intellectual Property is an independent one semester course which will give you a basic understanding in patent law, design law, trademark law and employee invention law. After this course, you should be able to:
• Name requirements for a patent, design, trademark
• Name purpose and advantages of protective rights
• Evaluate possible infringement actions
• Know how to apply for a patent, a design and a trademark
• Choose protective right for a certain invention
• Search for prior art

Prerequisite: Interest in intellectual property

Content:
1. Contents, Organisation
2. Patents
3. Utility Models
4. Designs
5. Trademarks
6. Employee Invention Act

Literature:
- Intellectual Property Law in Germany, Beck Verlag 2007

Methods: Lecture, exercises

Efficiency Statement: Written examination

Information, Downloads: https://elearning.uni-bremen.de/meine_seminare.php

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: Master ET/IT, CIT, CMM (elective)
Internet of Things
01-15-03-IoT-V

Responsible: Prof. Dr. Anna Förster
Lecturer: Prof. Dr. Anna Förster

Aim:
The Internet of Things (IoT) is an independent one semester course which will give you a basic understanding of the communication protocols and research directions in the Internet of Things. It will cover a broad spectrum of protocols and concepts, including sensor networks, cyber-physical systems, Industry 4.0, local area networks, vehicular networks and opportunistic communications.

After this course, you should be able to:
- Name and describe the relevant standards
- Evaluate IoT applications and their communication requirements
- Design and deploy simple IoT applications
- Understand Future Developments and research challenges in the area of IoT

Prerequisite: No formal requirements, attending the lecture “Communication Networks: Systems” is recommended.

Content:
- Basics of Wireless Communication
- Wireless sensor networks and their protocols (6LoWPAN, RPL, CoAP, Zigbee, EnOcean, ISA100, WirelessHART, etc.)
- Wireless LAN standards (IEEE 802.11)
- Vehicle-to-Vehicle networks (V2V)
- Opportunistic networks (Bluetooth, BLE, WiFi ad-hoc, etc.)

Literature:
- Jochen Schiller: Mobile Communications, 2nd ed., Addison-Wesley 2003
- IEEE 802 standards family, available on http://standards.ieee.org/about/get/802/802.html
- Zach Shelby, Carsten Bormann, 6LoWPAN: The Wireless Embedded Internet, John Wiley and Sons 2009

Methods: Lecture, project work

Efficiency Statement: Project work
Lab 1 CMM - Lab

Responsible: Prof. Dr. Walter Lang
Lecturer: Prof. Dr. Walter Lang

Aim:

The students shall get practical experience with the topics of CMM

Prerequisite: None

Content:

Four Lab courses are offered.

- Laboratory Design of Digital Systems
- Microsystems Laboratory
- Sensor Characterization Laboratory

Details of these Labs are given in Annex 1.
The students are attributed to the courses according to their choice and to availability of lab places.

Literature:

Given in the specific course

Methods: Groups up to 5 students. Short examination of the preparation before the experiment. The experiments use MATLAB/Simulink.

Efficiency Statement: The preparation and the answers of the preparation questions have to be done carefully, they will be checked by the tutors. Without preparation, taking part in the lab is not possible. After each lab, a protocol has to be written and given to the tutors. This protocol will also be checked.

Information, Downloads:
ECTS Credits: 3
SWS: 2
Workload: 60 hours
Suggested for: CMM 2nd term

https://elearning.uni-bremen.de/
Lab 2 CMM - Lab

Responsible: Prof. Dr. Walter Lang
Lecturer: Prof. Dr. Walter Lang

Aim:

The students shall get practical experience with the topics of CMM

Prerequisite: None

Content:

Four Lab courses are offered.

- Advanced Control Lab
- Laboratory Design of Digital Systems
- Microsystems Laboratory
- Sensor Characterization Laboratory

Details of these Labs are given in Annex 1. The students are attributed to the courses according to their choice and to availability of lab places.

Literature:

Given in the specific course

Methods: Groups up to 5 students. Short examination of the preparation before the experiment. The experiments use MATLAB/Simulink.

Efficiency Statement: The preparation and the answers of the preparation questions have to be done carefully, they will be checked by the tutors. Without preparation, taking part in the lab is not possible. After each lab, a protocol has to be written and given to the tutors. This protocol will also be checked.

Information,
Downloads: https://elearning.uni-bremen.de/

ECTS Credits: 3
SWS: 2

Workload: 60 hours
Suggested for: CMM 3rd term
Low Power Strategies in Wireless Sensor Networks
01-15-03-LPWSN-V

Responsible: Prof. Dr.-Ing. Alberto García-Ortiz
Lecturer: Dr. Yanqiu Huang

Aim: •

After this course, you should be able to:
• understand the principle of wireless sensor networks,
• understand related techniques for power management,
• get familiar with the mote operation and current research in WSNs.

Prerequisite: No formal requirements. Fundamentals of electronics engineering and information technologies.

Content:
Introduction of wireless sensor networks from node to network; overview of techniques for nodes power management including communication protocols, data processing algorithms; introduction of WSN mote operation

Literature:
• Further references will be announced in lecture

Methods: Lecture and exercise

Efficiency Statement: Oral examination

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and exercise 35%
Follow-up, reading, homework and preparation of exam 65%

Suggested for: CMM 2nd term (elective), Master ET/IT
Master Seminar

Responsible: Prof. Walter Lang
Lecturer: Prof. Walter Lang

Aim:

The aim of the first master seminar is to constitute a group out of the new students, to establish cooperation with other students and with the professors. Furthermore, the student should learn to prepare and to perform oral presentations.

Prerequisite: None

Content:

In the master seminar students give an oral presentation. The first part of this presentation contains general information about their background, their home country, their home university, their previous scientific and professional activities. The second part is about some of their previous scientific work done by the student in the past. This may be about their bachelor thesis, or about some other professional activities.

Literature:

Within the Master Seminar a printout of general information about the Master Program is given to the students and discussed.

Methods: Presentation
Efficiency Statement: Oral Presentation in the seminar

Information, Downloads: None

ECTS Credits: 2
SWS: 2

Workload: 60 hours
Presence in the seminar 40%
Preparation of the presentation 60%

Suggested for: CIT and CMM 1st term, (compulsory course).
Master’s Thesis

Responsible: Professors of Electrical Engineering
Lecturer: Professors of Electrical Engineering

Aim:

The master’s thesis is an autonomous work of research done with the guidance of a supervisor. The aim is to learn how to plan, to perform and to document scientific work. After the master’s thesis, the student should be able to do research within industrial surroundings or within a PhD project.

Prerequisite: Achievement of min 72 CP.

Content:

The master’s thesis is an autonomous, though supervised scientific work of considerable content. In each case a specific topic is defined by the student together with the supervisor. The master’s thesis is an independent work of research. It is documented in a master thesis report. The master’s thesis is concluded with an oral presentation.

Literature: Every student reads his/her topic related publications

Methods: Scientific research methods such as measurements, simulations, calculations and modelling.

Efficiency Statement: Master’s thesis report and presentation

Information, Downloads: Provided by the supervisor in the specific case. Searching for sources and study of the literature is part of the work.

ECTS Credits: 30
SWS: -

Workload: 900 hours
Scientific work 70%
Documentation and presentation 30%

Suggested for: CIT and CMM 4th term, (compulsory).
Microfluidic Devices
01-15-03-MiD-V

Responsible: Prof. Dr. Michael Vellekoop
Lecturer: Prof. Dr. Michael Vellekoop

Aim:
In the course an overview is given of the developments in the area of microfluidic devices from the early start (where especially silicon integrated valves and pumps where investigated) to the lab-on-a-chip devices of today. The functionality of the sensors and actuators, the technologies applied, and the design of fluidic chips will be discussed. Some basic fluidics aspects will be presented and a practical (Laborübung) in which COMSOL is used for the simulation of microfluidic elements is included. Lastly, a series of examples of currently investigated microfluidic devices will be shown, e.g. chips for capillary electrophoresis, couler counter, cytometry and optofluidics.
Practical: “Introduction to COMSOL based fluidic simulations” (Dr. S. van den Driesche).

After this course, you should be able to:
• understand the basics of microfluidics
• understand and explain the functioning of microfluidic devices
• apply characterization parameters for (elements of) microfluidic devices
• understand fabrication technologies for microfluidic devices

Prerequisite: Basic knowledge of microtechnology. This can be acquired by:
the course on “Introduction to Micro Technology” by M. Vellekoop, or
the course “Sensors and Measurement Systems” by W. Lang, or
studying a textbook such as “Introduction to Microfabrication” (S. Franssila)

Content:

Literature:
M. Koch, A. Evans, A. Brunnschweiler, Microfluidic Technology and Applications, RSP
H. Bruus, Theoretical Microfluidics, Oxford University Press

Methods: Lecture, practical

Efficiency Statement: Written examination

Information, Downloads: Stud.IP

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and practical 33%
Homework, practical preparation and exam preparation 67%

Suggested for: CIT 3rd term and CMM 3rd term (elective), M. Sc. ET/IT
Microsystems
01-15-03-MST-V

Responsible: Prof. Dr. Walter Lang
Lecturer: Prof. Dr. Walter Lang

Aim:
Microsystems is an introduction to MEMS (Micro Electromechanical Systems) devices.
After the course you should:
• Know important applications of microsystems.
• Know how to combine single process steps to full process flows.
• Understand process control and measurement techniques.
• Have a deepened knowledge in the fields of:
 o Microactuators
 o Energy in Microsystems
 o Sensor networks

Prerequisite: Basic knowledge of microtechnology. This can be acquired by the
course on “Microtechnology” by M. Vellekoop
Or The course “Sensors and Measurement Systems”
Or Studying a textbook such as “Introduction to Microfabrication”
 by Sami Franssila

Content:
- Application areas of Microsystems
- Process integration, process measurement, housing techniques, process cost estimation at
 the example of a pressure sensor
- Microactuators
- Energy in Microsystems
- Sensor networks

Literature:
Sami Franssila: Introduction to microfabrication
Völklein, Zetterer: Einführung in die Mikrosystemtechnik.

Methods: Lecture, Tutorial

Efficiency Statement: Written examination

Information, Downloads: Studip

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 2nd Semester (elective), CMM 2nd Semester (compulsory),
Master ET/IT
Micro Technology
01-15-04-IMT-V

Responsible: Prof. Dr. Michael Vellekoop
Lecturer: Prof. Dr. Michael Vellekoop

Aim:
Micro Technology is an independent one semester course in which you will obtain a basic understanding of the technology and processes used to fabricate microsensors, microactuators, microelectromechanical systems (MEMS), and microfluidic devices.

After this course, you should be able to:
• Understand and explain important sensor fabrication processes
• Relate specific material properties to microstructuring abilities and to sensor functions
• Understand the function of structures in microsensors and -actuators
• Design structures for a specific sensor function

Prerequisite: Basics of electrical engineering and electrical measurement methods

Content:
13. Contents, Organisation, Introduction
14. Manufacturing and Clean Room
15. Materials
16. Basic Processes
17. Structures
18. Integration
19. Tools
20. Future aspects

Literature:
Sami Franssila, Introduction to microfabrication, Wiley, ed. 2010

Methods: Lecture, practical in small group in the clean room

Efficiency Statement: Written examination

Information, Downloads: Stud.IP

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and practical 38%
Homework, practical preparation and exam preparation 62%

Suggested for: CIT 2nd term and CMM 2nd term (elective)
Bachelor Elektrotechnik (5th semester)
Modeling and Simulation of Sensors, Circuits and Systems in Automotive Electronics
01-15-03-MSAE-V

Responsible: PD Dr.-Ing. habil. Ajoy K. Palit
Lecturer: PD Dr.-Ing. habil. Ajoy K. Palit

Aim:

Automotive electronics must work in a very harsh environment which includes the wide temperature range from -40°C up to at least + 85°C. Without the deep understanding of theoretical and practical behaviors of sensors and their associated electronic circuits in such extreme operating conditions the reliability of automotive electronic systems cannot be guaranteed. Modeling and simulation of sensors, circuits and systems in Automotive Electronics is an independent one semester course which will give you an opportunity to grasp and pursue further the theoretical analysis behind the practical behavior of different sensors and associated electronic system in such extreme temperature and environmental conditions. The course will give you a basic understanding of Finite Elements Method (FEM) and its application to modeling, simulation, parameter extraction and design of inductive, capacitive, resistive and magnet based Automotive Sensors etc., which are often used in automotive electronics fields for the measurement/sensing of linear & angular positions, vibrations, speed, acceleration, pressure and current measurement etc. The sensor’s signal conditioner generates a wide range of output around its nominal output value both due to manufacturing tolerances of electronic components and their temperature dependencies. Hence, Monte-Carlo simulations of sensors’ associated electronic circuits are addressed to estimate such tolerance range for some selected sensors. Reliability issues of automotive electronic systems are also addressed.

After this course, you should be able to:
• Understand the Finite Elements Methods (FEM) and its application to inductive, capacitive, resistive sensors and magnet based Hall automotive sensors modeling etc.
• Understand the stationary, frequency domain and time dependent studies and parametric simulation of aforementioned sensors using COMSOL-Multiphysics/CST-Tool.
• Estimate the sensor’s signal conditioner output (mV or mA) using transfer function blocks
• Verify the sensors’ signal output using circuit simulation (LTSPICE) software
• Processing of sensor’s signal (MATLAB/C++ programming) in order to estimate linear & angular positions etc. and linearity test of sensor
• Estimate the tolerance band of sensor’s signal conditioner circuit using Monte-Carlo simulation and worst case simulation method for the entire operating temperature range
• Perform magnetic field simulation of a current carrying conductor for the measurement of current using Hall sensor
• Model, design and extract the NFC-antenna parameter for matching circuit design,
• Measure the NFC-antenna (S11) parameter with VNA (Smith Chart) and design the suitable
matching circuit (for Texas Instruments, NXP & Melexis Transceiver) using RF-simulation.
• Simulate & analyze the heat dissipation technique for automotive power electronic system
• Calculate the reliability (FIT/MTTF/MTBF) of automotive electronic circuits and systems.

Prerequisite: Electrical circuit theory, Mathematics and C++ / MATLAB programming

Content:
• FEM applications in automotive electronics
• Inductive, capacitive, resistive and magnet based automotive sensors modeling
• Stationary, time dependent and frequency domain modeling of automotive sensors
• Monte-Carlo & Worst-Case simulations
• Modeling & simulation of NFC-antenna
• NFC-antenna measurements using VNA & matching circuit design using RF-simulation
• Thermal simulation of automotive electronics using FEM
• Theoretical estimation of sensor signal using transfer function blocks (Laplace transform)
• LTSPICE simulation of sensor circuit
• Reliability calculation of automotive systems

Literatures/Reference Books:

• Sensoren in Kraftfahrzeug, Konrad Reif (Hrsg.), Bosch Technik fürs Leben, Viewweg+Teubner, Wiesbaden, 2010.

Methods: Lecture, Modeling/Simulation/Programming exercises

Efficiency Statement: Written examination, Modeling/Simulation Exercises

Information, Course Materials: E-mail: palit (at) uni-bremen.de & see the Ref. Book

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 40%
Lecture, homework and preparation of exam 60%

Suggested for: CIT and CMM, 2nd or 3rd term (elective course)
Network Simulation (previous title: Stochastic Simulation of Communication Networks and their Protocols)
01-15-03-StS-V (as of winter semester 2018/2019)

Responsible: Prof. Dr. Anna Förster
Lecturer: Prof. Dr. Anna Förster

Aim:
The students learn how to simulate communication networks in their full spectrum and complexity and develop their skills to perform systematic simulation studies on their own of complex scenarios.

Prerequisite: No formal requirements

Content:
- Discrete Event Simulation
- Radio transmission models
- Mobility models
- Traffic generation
- Interference models
- Power consumption and battery models
- OMNeT++
- Simulation speedup

Literature:

Methods: Lecture, exercises

Efficiency Statement: Combination examination (project, presentation, exercises)

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 35%
Reading, homework and preparation of lectures, exercises, exam 65%

Suggested for: CIT 2nd or 3rd term, (elective course), M. Sc. ET/IT
Next Generation Cellular Networks
01-15-03-NGCN-V

Responsible: Prof. A. Dekorsy
Lecturer: Dr. Stefan Brück

Aim:
New Standards for Cellular Networks is an independent one semester course which will give you a basic understanding of cellular networks, their history, the system structure, the protocols and the future developments of mobile communications.

Prerequisite: Communications Technology, Communication Networks

Content:
- Mobile Communications
 History and Principles
- Second Generation (2G): GSM Overview
- Third Generation (3G): UMTS Services and Applications, System Architecture, Air Interface
- UMTS Evolution
 High Speed Packet Access (HSPA)
- Beyond 3G systems
 UMTS Long Term Evolution (LTE)

Network Planning and Optimization
Targets, Challenges, Modeling

Literature:
WCDMA for UMTS, H. Holma and A. Toskala, Wiley.

Radio Network Planning and Optimization for UMTS, J. Laiho and A. Wacker and T. Novosad, Wiley

LTE, S. Sesia and I. Toufik and M. Baker, Wiley.

LTE for UMTS, H. Holma and A. Toskala, Wiley.

Methods: Lecture, exercises

Efficiency Statement: Oral examination

Information, Downloads: Literature is given in the lectures,
Please also refer to www.comnets.uni-bremen.de

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%
Suggested for: CIT and CMM 2nd or 3rd term, (elective course)
Nonlinear Systems
01-15-03-NLS-V

Responsible: Prof. Dr.-Ing. Kai Michels
Lecturer: Prof. Dr.-Ing. Kai Michels

Aim:
Based on the lecture „Grundlagen der Regelungstechnik“ (Basics of Control Engineering), where only linear systems were discussed, this lecture will concentrate on nonlinear systems with their special features and suitable control solutions. The students shall learn to handle nonlinearities in simple control loops.

Prerequisite: Lecture „Grundlagen der Regelungstechnik“ or equivalent knowledge about basics of control (bode diagrams, nyquist plots, nyquist stability criterion, PID controller design)

Content:
• Basics and features of nonlinear systems
• Switching functions as transfer elements
• Definition of stability for nonlinear systems
• Direct method of Lyapunov
• Describing function
• Popov criterion, circle criterion, hyperstability
• Sliding-mode control
• Gain Scheduling

Literature:
• K. Michels: Control Engineering (Script in German and English)
• O. Föllinger: Nichtlineare Regelungen I und II (German)
• K. Michels: Fuzzy Control (English)
• Wassim M. Haddad: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach (English)
• Sejid Tesnjak: Nonlinear Control Systems (English)

Methods: Lectures, tutorial

Efficiency Statement: Written or oral examination, depending on the number of participants

Information, Downloads:

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 35%
Reading, homework and preparation of exam 65%

Suggested for: CMM 2nd term (compulsory course), CIT 2nd term (elective course)
Optimisation Theory
01-15-03-OpT-V

Responsible: Dr.-Ing. Dagmar Peters-Drolshagen
Lecturer: Dr.-Ing. Dagmar Peters-Drolshagen

Aim:
Optimisation Theory is a one semester elective course. The aim is to provide a basic understanding of operations research methods necessary for engineers to solve their technical problems in an efficient and innovative manner.

After this course, you should be able to:

- Describe a generic optimisation strategy which fits to almost all optimisation strategies
- Depict the procedure of local direct & indirect as well as global optimisation methods
- Handle constraints efficiently
- Understand the meaning of one dimensional optimisation methods
- Grade the performance of different operations research approaches
- Apply optimisation to engineering problems

Prerequisite: Basics of linear algebra and differential calculus

Content:
- Organisation, Topics
- Mathematical Basics, Step width control
- Task Formulation, Auxiliary Conditions & Constraints, Generic Optimisation Strategy
- Necessary & sufficient Optimum Conditions
- Classification & Transformation Methods
- One dimensional Methods (interpolation based & direct)
- Local, multi dimensional, direct & indirect Methods
- Global Optimisation Methods
- Project (matlab)

Literature:

Methods: Lecture, exercises partially using Matlab, student project concluding with a small talk

Efficiency Statement:
Portfolio Assessment consisting of:
1. Student project concluded with a talk
2. Written Exam

ECTS Credits: 4
SWS: 3
Workload: 120 hours
Lectures and exercises 35%
Reading, project and preparation of exam 65%

Suggested for: CIT and CMM 1st, 2nd or 3rd term, (elective course)
Presenting science
01-95-03-PSc-V

Responsible: Walter Lang
Lecturer: Walter Lang

Aim:
In this course you will train the presentation of scientific results.
There will be a tutorial introduction on giving presentation and on making slides.
Then, every student will prepare and give a presentation on a current research topic.
The presentation will be analysed together, an improved version will be made.

Prerequisite: None

Content:
- Introduction to giving talks and preparing slides
- Choosing a topic
- Preparing and presenting a speech
- Analysis, improvement

Literature:
Literature will be provided in the lectures

Methods: See content

Efficiency Statement: Speech, corrected slides

Information, Downloads: -

ECTS Credits: 2

SWS: 2

Workload: 60 hours
Lectures and courses 30%
Homework and preparation of exam 70%

Suggested for: CIT and CMM 2nd term, (elective course)

When combined with “Understanding Germany”, then both courses together will have 4 ECTS and can be used as an elective in CIT and CMM.
Process Automation I
01-15-03-PAut1-V

Responsible: Prof. Dr.-Ing. Kai Michels
Lecturer: Dr.-Ing. Jochen Schüttler

Aim:
Process Automation I is an independent one semester course which will give you an understanding in DES-Discrete Event System Design and its application in plant and device automation.
After this course, you should be able to understand:
- Discrete event systems modelling
- Formal languages, automaton theory, Petri nets
- Basics of supervisory control theory
- Basics of Timed Automata
- Computation Tree Logic CTL, TCTL
- Application of DES Theory for different plants
- Software tools for analysis of DES

Prerequisite: BSc. or Beng.

Content:
- Discrete event systems modelling
- Formal languages, automaton theory, Petri nets
- Basics of supervisory control theory
- Basics of Timed Automata
- Computation Tree Logic CTL, TCTL
- Application of DES Theory for different plants
- Software tools for analysis of DES

Literature:
- Introduction for discrete event systems, C.G. Cassandras, S. Lafortune, Springer Verlag
- Petri Nets for Systems Engineering, C. Girault, R. Valk, Springer Verlag

Methods: Lectures, exercises

Efficiency Statement: Final written examination; Exam performance: Successful presence in all weekly exercises and delivering graded exercises

Information,
Downloads: https://elearning.uni-bremen.de/
ECTS Credits: 4
SWS: 3
Workload: 120 hours
- Lectures and courses 38%
- Reading, homework and preparation of exam 62%

Suggested for: CIT, CMM (elective course)
Project

Responsible: Professors of Electrical Engineering
Lecturer: Professors of Electrical Engineering

Aim:

Within the project, the student learns to perform scientific investigations and to document them in the form of a thesis and to present the results. The student also learns how to work in a group of scientists. After the project, the student should be prepared for the master thesis.

Prerequisite: None

Content:

The project is an autonomous, though supervised scientific work. It can be done in a group of students or as the work of one single student. In each case a specific topic is defined by the student together with the supervisor. The project is an independent work of research. It is documented in a project thesis. The project will also be presented, generally in the seminar of the institute of the supervisor as an oral presentation.

Literature: Literature linked especially to the project will be handed out to the students when beginning the specific project.

Methods: Scientific research methods such as measurements, simulations, calculations and modelling.

Efficiency Statement: Project report and presentation

Information, Downloads: Provided by the supervisor in the specific case. Searching for sources and study of the literature is part of the work.

ECTS Credits: 18
SWS: 12

Workload: 540 hours
Scientific work 70%
Documentation and presentation 30%

Suggested for: CIT and CMM 3rd term, (compulsory course).
Real-Time Software Design 1 & 2

Responsible: N. N.
Lecturer: N. N.

Aim:
Introduction and application of the requirements-specification and SW-design of real-time problems supported by real-time operating systems for case-studies of high significance and conceptual importance. Special focus on the introduction of verifiable / certifiable-by-inspection fault-tolerance-oriented components.

After this course, the students should be able to:
• design highly understandable problem-oriented real-time SW which can be systematically transformed to any suitable programming language supported by a real-time operating system (e.g. C++ / Windows NT; Ada / POSIX)
• design conceptually the components of a real-time operating system for PLCs with respect to the standard IEC 6 1131-3
• apply the scheduling strategies of highest conceptual importance (Rate Monotonic, Earliest Deadline First Scheduling), verify task-schedulability
• understand the conceptual hybrid design of a PLC system-SW
• introduce verifiable / certifiable FT-oriented SW-components for dependable control with respect to the standard IEC 6 1508-3

Prerequisite: Process-Automation 1

Content:

Real-Time SW-design 1
- Models for the real-time SW-development
- SW-design in-the-large (SW-architecture with modules / import-relations)
- SW-design in-the-small (SW-architecture with procedures / call-relations, tasks / task-control relations)
- Hybrid SW-design (function- & object-oriented)
- Case Studies 1: Process-identification package; PLC system-software

Real-Time SW-design 2
- Fault-tolerance-oriented tasks for embedded systems
- Schedulability / task-scheuling strategies
- Design of a real-time operating system: task management
- Design of a process-I/O-module
- Exception handling: Sensor faults, deadline violation
- Case studies 2: Dependable fuzzy control with PLC

Literature:

Methods: Lecture, exercises are integrated into the lecture, discussion

Efficiency Statement: Oral examination

Information: Script

ECTS Credits: 2 x 4

SWS: 2 x 3
Workload: 2 x 120 hours
 Lectures and courses 38%
 Reading, homework and preparation of exam 62%

Suggested for: CMM, CIT (elective course)
RF Frontend Devices and Circuits
01-15-03-RFC-V

Responsible: Prof. Dr.-Ing. Martin Schneider
Lecturer: Prof. Dr.-Ing. Martin Schneider

Aim:
This course aims at teaching the fundamental working principles of analogue RF frontend devices and circuits that are the main building blocks of fixed and mobile devices for wireless communications (GSM, WLAN, UMTS, RFID, etc.) as well as for sensors like radar sensors. After this course you should understand the basic principles of RF devices like amplifiers, mixers, oscillators, PLL’s, and frequency synthesizers. The fundamentals of two-port circuits, electronic noise, and effects of non-linearities are addressed at first. Based on these theoretical parts you should be able to discuss the pros and cons of different RF frontend architectures and to design first basic analogue RF frontend circuits.

Prerequisite: Basic system and communication theory

Content:
- Two-port circuits
- Noise in electronic circuits
- Fundamentals of non-linear devices
- RF devices
- RF circuits and frontends

Literature:

Methods: 2h lecture, 1h exercises and tutorial

Efficiency Statement: Written examination

Information, Downloads: http://www.hf.uni-bremen.de

ECTS Credits: 4
SWS: 3
Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 1st term (compulsory course), CMM (elective), Master ET/IT
Robots are complex mechanical, automatic and informatics systems which are of growing interest not only in industrial robotics but also in other areas such as service robotics, mobile robotics and medical robotics. This module deals with the most important fundamental concepts of the robotics and provides students with the knowledge about the basis of this fascinating and future oriented area. The knowledge gained in lectures, students can apply for solving the practical examples considered in practical exercises.

Prerequisite: BSc. or Beng.

Content:
The module starts with the mathematical preliminaries and the consideration of a manipulator kinematics. In connection to that, direct (forward) as well as inverse kinematics will be investigated. As an important concept for the solution of direct kinematics the so-called Denavit-Hartenberg convention will be introduced. Regarding the solution of inverse kinematics problems both the analytical and numerical solution will be examined. An important topic of the module is also the trajectory planning. The module ends with the consideration of different methods for robot control and basic control strategies for robotic systems.

Literatur:

Methods: Lecture, exercises, laboratory experiments

Efficiency Statement: Written examination; The successful attendance of the laboratory exercises is the prerequisite for taking part in the written exam.
Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT and CMM 2nd or 3rd term, (elective course)
Robotics II
01-15-03-Rob2-V

Responsible: Dr. Danijela Ristić - Durrant
Lecturer: Dr. Danijela Ristić - Durrant

Aim:
Robots are complex mechanical, automatic and informatics systems which are of growing interest not only in industrial robotics but also in other areas such as service robotics, mobile robotics and medical robotics. Starting from the basic robot control strategies, this module is focused on the specific (advanced) aspects of robotics such as Visual Robot Control. As such, the module provides students with the knowledge about the basis of this fascinating and future oriented robotics area. Although focused on robotics, the knowledge gained in lectures concerning digital image processing, camera technologies and stereo vision students can apply in a variety of different engineering fields such as biomechanics and car driver assistance systems.

Prerequisite: BSc. or Beng., Robotic I recommended

Content:
The module is focused on the specific aspects of robotics such as:
- Visual robot control (Visual servoing)
and related fields:
- Digital image processing
- Projective transformations
- Camera models
- Stereo vision (epipolar geometry and 3D reconstruction)

Literatur:

Methods: Lecture, exercises, laboratory exercises

Efficiency Statement: Written examination. The successful attendance of two laboratory exercises is the prerequisite for taking part in the written exam.

Information, Downloads: https://elearning.uni-bremen.de/

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 2nd or 3rd term, CMM 3rd or 4th term, (elective course)
Sensors and Measurement Systems
01-15-03-SAMS-V

Responsible: Prof. Dr. Walter Lang
Lecturer: Prof. Dr. Walter Lang

Aim:
Sensors and measurement systems is an independent one semester course which will give you a basic understanding in sensors, measurement and microsystems technology. After this course, you should be able to:
• Name and explain important sensors
• Apply characterization parameters for sensors
• Choose sensors for a given application and apply them
• Analyze sensor systems
• Understand micromachining technologies for sensors

Prerequisite: Basics of electrical engineering and electrical measurement

Content:
1. Contents, Organisation
2. Thermal sensors
3. Thin film technology
4. Pressure sensors and bulk micromachining
5. Inertial sensors
6. Flow Sensors

Literature:
I. Sinclair: Sensors and Transducers.
J. Bentley: Principles of measurement systems.

Methods: Lecture, exercise in the clean room

Efficiency Statement: Written examination

Information, Downloads: Studip

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 1st term (elective), CMM 1st term (compulsory course), ETIT Master
Sensor Science
01-15-03-SSc-V

Responsible: Prof. Dr. Michael Vellekoop
Lecturer: Prof. Dr. Michael Vellekoop, Dr. Sander van den Driesche

Aim:
In the course an introduction is given on science in the field of sensors. It is discussed what is specifically essential for research in the area of sensors and how research articles (literature) are useful for the design of sensors. Each student investigates an own sensor topic.

After this course, you should be able to:
- To conduct an efficient literature search
- To be able to discriminate between the main and minor aspects of a research topic
- To study and understand the physical and electronic fundamentals of a specific sensor
- To be able to report in word and in writing

Prerequisite: Basic knowledge of microtechnology. This can be acquired by:
the course on “Introduction to Micro Technology” by M. Vellekoop, or
the course “Sensors and Measurement Systems” by W. Lang, or
studying a textbook such as “Introduction to Microfabrication” (S. Franssila)

Content:
1 Conduct a literature search on a specific topic
2 Reading of scientific publications in the field of sensors
3 Study specific aspects of sensor science through the found literature
4 Write a report on the study
5 Oral presentation

Literature:
Handout (given in the lecture)

Methods: Lecture, practical

Efficiency Statement: Oral examination

Information, Downloads: Stud.IP

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and practical 33%
Homework, practical preparation and exam preparation 67%

Suggested for: CIT 3rd term and CMM 3rd term (elective), Elektrotechnik Master (SoSe)
Speech and Audio Signal Processing
01-15-03-SAS1-V

Responsible: A. Dekorsy
Lecturer: S. Götze

Aim:
Basic Understanding of Speech- and Audio-Signal-Processing

Prerequisite: -

Content:
1. Introduction
2. Room Acoustics
3. Speech Generation and Perception
4. Noise Reduction
5. Acoustic Echo Cancellation / Adaptive Filtering
6. Listening Room Compensation / Dereverberation

Literature:

Methods: Lecture, exercises

Efficiency Statement: Written examination

Information,
Downloads: http://www.ant.uni-bremen.de/en/courses/sasp/

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT and CMM 2nd or 3rd term, (elective course)
Stochastic Simulation of Data Networks and Their Protocols (until summer term 2018) (new title: Network Simulation)
01-15-03-StS-V

Responsible: Prof. Dr. Anna Förster
Lecturer: Prof. Dr. Anna Förster

Aim:
The students learn how to simulate communication networks in their full spectrum and complexity and develop their skills to perform systematic simulation studies on their own of complex scenarios.

Prerequisite: No formal requirements, attending the lecture “Communication Networks: Theory” is recommended.

Content:
- Discrete Event Simulation
- Radio transmission models
- Mobility models
- Traffic generation
- Interference models
- Power consumption and battery models
- OMNeT++
- Simulation speedup

Literature:

Methods: Lecture, exercises

Efficiency Statement: Oral examination

Information, Downloads: Literature is given in the lectures, Please also refer to www.comnets.uni-bremen.de

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 2nd or 3rd term, (elective course), M. Sc. ET/IT
Systems-on-Chip: Architectures and Design Methods
01-15-03-SoC-V

Responsible: Prof. Dr.-Ing. Alberto García-Ortiz
Lecturer: Prof. Dr.-Ing. Alberto García-Ortiz

Aim:

The students acquire specialized knowledge about the architectures of modern Systems-on-Chip using heterogeneous technologies (e.g., electrical and photonic) and heterogeneous modules (e.g., processors, accelerators, analog components). They learn the implementation strategies and skills required for the implementation of those Systems-on-Chip in nanometric technologies. They are able to read critically, assimilate, and analyze current research papers regarding systems-on-chip.

Prerequisite: None

Content:
Introduction to Systems-on-Chip
Low-Power techniques for SoCs in nanometric technologies
On-Chip nano-photonic communication
3D technologies

Literature:
- Lecture slides
- Selected research papers

Methods:
- Lecture
- Exercises and oral presentation of a research paper

Efficiency Statement: Oral examination

Information, Downloads: https://elearning.uni-bremen.de/

ECTS Credits: 4

SWS: 3

Workload: 120 hours (lectures and courses 42h, homework 28h and preparation of exam and research paper 50h)

Suggested for: CIT and CMM, 2nd or 3rd term, (elective course)
System Theory
01-95-03-STIT-V

Responsible: Dr. Dagmar Peters-Drolshagen
Lecturer: Dr. Dagmar Peters-Drolshagen

Aim:

System Theory is a one semester course. The aim is to provide a common level of knowledge concerning the basics of discrete signals and systems. The topics are used in many other courses in Information and Automation Engineering (CMM) as well as in Communication and Information Technology (CIT).

After this course, you should be able to:

• be familiar with Fourier, Laplace and z-transformations
• be familiar with stochastic processes (probabilities, densities, distributions, moments, …)
• be familiar with tools of linear algebra (matrix decompositions, …)

Prerequisite:

Content:
- Contents, Organisation
- Review on Fourier and Laplace transformation
- Z-transformation
 - Derivation and existence
 - System description by z transformation
- Stochastic processes
- MIMO systems
 - Description of systems with multiple inputs and outputs
 - Tools of linear algebra (matrix decompositions, …)

Literature:

Methods: Lecture, PC-exercises

Efficiency Statement: Written examination

Information, Downloads: -

ECTS Credits: 4

SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT and CMM 1st term, (compulsory course)
Understanding Germany
01-95-03-UGer-S

Responsible: Walter Lang
Lecturer: Thomas Neumann

Aim:
For studying, living and working in Germany it is useful to acquire some basic knowledge about the German culture, the mentality and the political system. So we will take a look at German history and some philosophical and cultural aspects in connection with current political problems and discussions. After that the students will have a deeper insight into the reasoning behind different political positions in Germany.

Prerequisite: None

Content:
- methodic preliminaries
- the “nationbuilding” of Germany, from microstates to a nation 1814-1914
- the path from nationalism to Hitler’s totalitarianism 1918-1945
- the formation of the democratic Bundesrepublik Deutschland and its problems 1945 – until today

Literature:
Literature will be provided in the lectures

Methods: lectures, group work, discussion. As an option we can probably visit the Tank Museum in Munster and the former concentration camp in Bergen – Belsen.

Efficiency Statement: Essay

Information, Downloads: -

ECTS Credits: 2

SWS: 2

Workload: 60 hours
Lectures and courses 30%
Homework and preparation of exam 70%

Suggested for: CIT and CMM 1st term, (elective course)

When combined with “Presenting Science”, both courses together will add up to 4 ECTS and can be used as an elective in CIT and CMM.
Wireless Communications
01-15-03-WCom-V

Responsible: Prof. Dr.-Ing. A. Dekorsy
Lecturer: Prof. Dr.-Ing. A. Dekorsy

Aim:
This is the second part of a two semester course. After this course, the students will have a basic knowledge on modern digital modulation systems. They should be able to:

- Explain concepts of MAP und ML-designs.
- Apply the Viterbi-Algorithm on distorted modulation signals.
- Develop full system concepts for mobile communication scenarios.
- Apply knowledge on modern solutions for mobiles such as OFDM and CDMA.
- Combine existing Matlab-Modules for the simulation of mobile communication systems.

Prerequisite: Communications Technologies

Content:
1. Optimal Receiver for AGN
 1.1. Optimal AWGN Receiver
 1.2. Generalization for coloured noise
 1.3. Symbol / Bit Error Probability
2. Transmission under ISI Conditions
 2.2. Optimal Receiver (MSLE, Forney)
 2.3. Viberbi Algorithm
 2.4. Error Probability at Viterbi Detection
3. Mobile Radio Channels
 3.1. Mulitpath Propagation
 3.2. Doppler Spreading
 3.3. Doppler Spreading
4. Mobile Radio Transmission Concepts
 4.1. The OFDM System
 4.2. Principles of Code Multiplex (CDMA)
 4.3. The GSM Mobil Radio System
 4.4. Error Probability at Viterbi Detection

Literature:
- David Tse, Pramond Viswanath: Fundamentals of Wireless Communications.
- Paulraj, Nabar, Gore: Introduction to Space-Time Wireless Communications.

Methods: Lecture, exercises with presentation by the students

Efficiency Statement: Written examination

Information, Downloads:
http://www.ant.uni-bremen.de/en/courses/ct2

ECTS Credits: 4
SWS: 3

Workload: 120 hours
Lectures and courses 38%
Reading, homework and preparation of exam 62%

Suggested for: CIT 1st term, (compulsory course), CMM 1st or 3rd term, (elective course)
Annex 1: Details of the Labs for CMM

Advanced Control Lab
01-15-03-LRT-P

Responsible: Prof. Dr.-Ing. Kai Michels
Lecturer: Prof. Dr.-Ing. Kai Michels

Aim:

The students shall get experience with the design and practical application of complex controllers.

Prerequisite: Lecture „Control Theory I“

Content:
1. Crane: Modelling, analysis, and state space control (pole placement method) of a crane
2. Inverted pendulum I: Swinging up of an inverted pendulum using different methods
3. Inverted pendulum II: Modelling, analysis, and state space control (pole placement method) for the stabilization of an inverted pendulum
4. Helicopter: Modelling, analysis, and state space control (Riccati method) of a helicopter model
5. Identification and control with an industrial plant control system

Literature:

Michels, K.: Script „Control Engineering“ (German and English)
Scripts for each experiment in German and English

Methods: Groups up to 5 students. Short examination of the preparation before the experiment. All experiments use MATLAB/Simulink.
Laboratory Design of Digital Systems
01-15-03-DDsy-P

Responsible: Prof. Dr.-Ing. Alberto García-Ortiz
Lecturer: Prof. Dr.-Ing. Alberto García-Ortiz

Aim:
Students shall get basic experience of methods for automated Digital System Design using CAD tools. Students learn special skills for the realization of function-specific digital modules and complex circuits.

Prerequisite: Architectures and Design Methodologies of Integrated Digital Systems

Content:
Logic synthesis using synopsis-framework
Place and Route using cadence-framework
Verification of digital systems
Design-for-test
Realization of a computer game on FPGA
 Design of function blocks
 Test of modules
 System integration

Literature:

Methods:
Practical use of state-of-the-art industrial CAD design tools (Cadence, Synopsys, Mentor)
Groups up to 3 students.
Short examination of the preparation before the experiment.
Microsystems Laboratory
01-15-03-MiS-P

Responsible: Prof. Dr. Walter Lang, Prof. Dr. M. Vellekoop
Lecturer: Prof. Dr. Walter Lang, Prof. Dr. M. Vellekoop

Aim:

The students shall get experience in microtechnical processing.

Prerequisite: Lecture „Sensors and Measurement Systems (Lang) or Microtechnology (Vellekoop)”

Content:
1. How to work in a cleanroom
2. How to operate processing machines
3. Hands-on training in micromachining

Literature:

Script “Sensors and Measurement Systems” by W. Lang

Methods: Groups up to 5 students. Short examination of the preparation before the experiment.
Laboratory Design of Microelectronics
01-15-03-MMK-P

Responsible: Prof. Dr.-Ing. Steffen Paul
Lecturer: Prof. Dr.-Ing. Steffen Paul

Aim:

Students shall get basic experience of methods for the design of analog and mixed signal integrated circuits using industrial CAD tools starting from a system level specification. Students learn special skills from verification, circuit simulation, synthesis, device sizing down to first steps for layout.

Prerequisite: Integrated Circuits

Content:
1. Matlab modelling of systems
2. Circuit simulation, synthesis, digital layout
3. Analog design by gm/id method
4. Layout of analog circuits
5. Mixed signal chip design

Literature:

Methods: Practical use of state-of-the-art industrial CAD design tools (Cadence, Synopsys, Mentor)
Groups up to 3 students.
Short examination of the preparation before the experiment.
Sensor Characterization Laboratory
01-93-03-SCL-P

Responsible: Prof. Dr. Walter Lang
Lecturer: Prof. Dr. Walter Lang

Aim:
The students shall get experience in using sensors and analyzing sensor data.

Prerequisite: Lecture „Sensors and Measurement Systems (Lang)“

Content:
A thermal sensor for infrared radiation (thermopile) is analyzed. The sensor is exposed to different thermal radiation of varying intensity. Sensitivity, time constant and noise are evaluated.

Literature:
Script “Sensors and Measurement Systems” by W. Lang

Methods: Groups up to 6 students. Short examination of the preparation before the experiment.